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Two-Dimensional Rn-Gravitation 
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A system with constraints is considered: a string theory whose Lagrangian is the 
nth power of the Gauss curvature of a space-time manifold (n e N, n > 1). The 
problem is solved exactly because after the constraints are utilized we deal with 
a variational problem with a trivial Lagrangian, i.e., its Euler-Lagrange equations 
are satisfied identically. One can say that the constraints "swallow" all dynamical 
degrees of freedom of the field theory. The investigation is a continuation of the 
! 989 work of Burlankov and Pavlov, who solved the problem of two-dimensional 
RZ-gravitation under the gauge ~/ = 1. 

1. A S Y S T E M  W I T H  C O N S T R A I N T S  

Recently, theoretical physicists have focused considerable interest on 
one-dimensional theories, e.g., the theory o f  strings (Green et  al., 1987). 
Studying model theories helps in understanding the peculiarities o f  systems 
with constraints such as Einstein's theory o f  gravitation. Of  particular interest 
is the problem of  introducing gravitation in one-dimensional  space (e.g., 
Polyakov, 1987). 

Insofar as the Hilbert functional o f  gravitation in (1 + D-dimensional  
space-time gives the Gauss-Bonnet  topological invariant, we take as a Lagran- 
gian the Gauss curvature in nth power, n E N, with n > 1. The theory keeps 
its covariance. Although the calculations are cumbersome,  the problem can 
be solved fully. It turns out to be a useful example to demonstrate the 
characteristics of  systems with constraints. 

We analyze the dynamics of  a space-time metric taken in Arnowi t t -  
Deser-Misner  (ADM) form" 
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where the metric functions ct(t, x) and 13(t, x) have meaning as Lagrange 
multipliers (to be shown below). The very simple form of the metric is in 
conformal gauge that is popular in string theory. But then one has to add 
lost constraints since a restriction to some coordinate system leads the corres- 
ponding Lagrange multiplier metric coefficients to vanish before we vary 
them. 

The Gauss curvature in ADM coordinates can be expressed by (Pogore- 
lov, 1969) 

R = _ _ _  1 - sde t ( r t  [3 ~ 
2a',/ \ a '  13' y'  

([ ] [  1 (~2)-  _ (y13) ,  (~/13). _ ( ~ 2  +~ 
(1.2) 

The functional of action is in the form 

1 I Rnct~/ S = ~  

l[ 
.~ \o,,~/ \ 2,~,y ]J (1.3) 

where f,~ denotes integration over the space-time manifold. Varying S by 
the metric, one gets the Euler-Lagrange equations: 
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where L is the density of the Lagrange function. 
The differential equations of the extremals (1.4) are very complicated. 

Matters are clearer in the Hamiltonian formulation, since we deal with a 
nondegenerate theory with higher derivatives (Dubrovin et al., 1986), so it 
is assumed that the Hamiltonian description can be used. For this purpose 
we use a slightly modified version of the Ostrogradski method (Dubrovin et 
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al., 1986). It is relevant to introduce, along with generalized coordinates (c~, 
[3, ~), 

u = - -  (1.5) 
ot 

Then the action in coordinates (oL, [3, "y, u) takes the form 

l I (  u + a '  
S = ~ a~/) ~-" a - (1.6) 

t,x '~/ 

Momentum densities are calculated using 

"rr, = ga 0u 2 (~176 a - ~/ 

"tr~ = 

8S 0L 
8~ 0~ 

8S 0 0L 
ox 

8S 0L 0 0L 
8~ 0~ 0t 0~ qT., t ~--. 

The Hamiltonian 

0 0L 
Ox 0~/' 

(1.7) 

f 

H = J~ (~.u + ~ a  + ~13 + ~ ?  

- L[~,, ~ ,  o,', ~,"; [3, if ,  ~', if'; ~t, ~t, ~t', ~, ~'1) (1 .8)  

becomes, taking account of (1.5), 

H - -  Ix (~rua + ,n',~6L + ,n'~[3 + r - (xu) 

- L[oL, od, (x"; [3, [3'; ~/, ~/'; u, u, u']) (1.9) 

where u, by virtue of the nondegenerate Lagrangian, is expressed through 
"n-, from (1.7). As a result, ignoring boundary terms, one has the following 
expression for the Hamiltonian: 

+ - u  - ~ (1.10) 
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Along with the equations of motion obtained by varying the Hamiltonian by 
variables u(t, x),  ~(t, x), there are two differential constraints ~S/8ot and 8S/813: 

(n - 1) ~/q'T n / ( n - I )  - -  //"~'.,/ "~- = 0 

u + 'rr.y = 0 (1.11) 

In relativistic theories their energy (the value of the Hamiltonian) vanishes. 
The system (1.11) can be integrated once, and then takes the form 

l ( ~ ) ' / ( ' - ' ) T r ~ n - ' ) / ( n - O + ( ~ - - - ~ f + T r ~ = c ( t )  
2n - 1 

u'rr" + ~/-rr~ = 0 (1.12) 

where c(t) is an arbitrary function of time. 
The Hamiltonian formulation is defined by the Poisson structure 3 on 

the functional phase space U(u, 7r,, "y, ~rv). Its nonzero brackets are 

{~/(t, x), "rrv(t', x')} = ~(t - t ' )~(x  - x ' )  

{u(t, x),  7r,(t', x')} = ~(t - t ' )~(x  - x ' )  (1.13) 

(In geometrodynamics, U could be considered the phase space of Wheeler-De 
Witt superspace.) 

Then we construct on the basis of constraints (1.11) the functionals 

1 2 ~r! 2"-0/~"-1) + + - c ( t ) )+( t ,  O[+] I,x (~-S- i  - " \'~("-1~ X)  

I ' ~[X] = (u~" + ~/~.~)X(t, x) (1.14) 
,x 

and calculate their Poisson bracket 

{,I,, _=} = ~-z S~z  (1.15) 
,x;,t~x' 

The result of the calculation is 

~[X]} = ~[(qbX)'] + ( c(t)d~(t, x)  (i.16) {,I,[+], 
3 



Two-Dimensional Rn-Gravitation 2111 

So, the differential constraints (1.11) form a closed algebra (so there are no 
other constraints in the theory) and they do not annul the Poisson brackets. 
We can express the variables ax v and u from the constraints as 

7r2v = c(t)  2 n ~  n 

u = -~/~,'rr'J (1.17) 

2. F U N C T I O N A L  F O R M S  

For the investigation of covafiant theories, mathematical tools of the 
theory of variational complexes (Olver, 1988) that is a generalization of the 
De Rham complex of differential forms prove to be useful. The variational 
complexes are decomposed into two components. The first part is obtained 
by reformulation of the De Rham complex onto spaces of differential functions 
set on V C X • D, where X is a space of independent variables and U is a 
space of dependent variables. A differential r-form is given by 

okr = ~a Pj[U] dx J (2.1) 
s 

where the Pj are differential functions and 

dx J = dx  j~ A ... A dx  jr, 1 <- j l  < ... < j r  <- p (2.2) 

constitute the basis of a space of differential r-forms A r T * X .  

Since for relativistic theories a consequence of covariance of the descrip- 
tion is that the Hamiltonian is zero, we will be interested here only in the 
second part of the variational complex (Burlankov and Pavlov, 1989). Let 
us suppose the Hamiltonian constraints to be resolved. 

Differential forms are active on "horizontal" variables X from M, and 
vertical forms are constructed analogously--they active on "vertical" vari- 
ables u and their derivatives. A vertical k-form is a finite sum 

tb k = ~ ~ [u] du~), ~ A ,.. A du~ (2.3) 

where the P~j are differential functions. Here independent variables are like 
parameters. 

Insofar as the vertical form & is built on a space of finite jets M ~"), a 
vertical differential has properties of bilinearity, antidifferentiation, and clo- 
sure, like an ordinary differential. 

Here we use functional forms, connected with the introduced vertical 
forms, as functionals connected with differential functions. Let to k = fx 6~k 
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be a functional k-form corresponding to a vertical k-form &k. A variational 
differential of a form tok is a functional (k + 1)-form corresponding to a 
vertical differential of a form 6~k: 

to(k+ n) _= 8tok = fx ~{bk (2.4) 

The basic properties are deduced from the properties of the vertical differen- 
tial, so we get a variational complex. A variational differential defines an 
exact complex 

8 8 8 8 

0 - ~ A  ~ > A ~ , ~ A 2 ,  >A3, >... (2.5) 

on spaces of functional forms on M. 
Of particular interest in theoretical physics problems are functional 

forms: to ~ to~, to2. In the present problem, after the constraints (1.14) are 
utilized, we get a functional 1-form, as a generalization of a differential 
Cartan form for dynamical systems: 

tol = I~  ['try(t, rr,, (w__~))dr-u(t, 7r~, ( -~) ,  ( -~) ' )d ' r ru]  (2.6) 

Equations of motion are obtained as a condition of  the closedness of the l- 
form: 8to ~ = 0. But, as we demonstrate below, there is a 0-form too: 

too = I tb~ ~/' ~ )  (2.7) 
,x 

so that 8to ~ = t o l ,  i.e., to~ is not only a closed form, it is an exact one. 
Acting by the operator of the variational differential 8 on the form (2.7), 

we get 

From this we find conditions on eb ~ (t, ~, 7 . )  are 

"tl" u , 

gx \ O'rr'] - u  t, ~ru, ~ V ) '  
0r o 

(2.8) 

O'tru (2.9) 
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The system (2.9) can be solved analytically: 

l ~n IT!2n~ - 1)l(n- l) _ &~ ~l[c(t) 2 n -  1 

1 ",L "lT!2n-1)/(n-l)~ I + "rr" arcsin c(t) I n 
- - / J 

(2.10) 

where rr,(et, 6t, et', et"; [3, [3', [~', [3"; % % ~, ~/') in the initial variables is 

)] = 1 + 213~/ - (c~ 2 + [32), 
w, ot--~ 2a~/ (2.11) 

The formula (2.10) generalizes a result obtained in Burlankov and Pavlov 
(1989). 

We get a generalized De Rham variational complex: 

8 
0 ~ A ~ --~ AI, ---) 0 (2.12) 

because the operator of the variational differential 8 is nilpotent: 82 = 0. So the 
generalized De Rham cohomology group is trivial. Translating into physical 
language, we conclude that the functional of action (1.3) does not define any 
dynamical problem. 
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